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SPATIAL FREQUENCY DOMAIN ERROR BUDGET

Debbie Krulewich, Herman Hauschildt
Lawrence Livermore National Laboratory
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1. Abstract
The aim of this paper is to describe a methodology for designing and characterizing machines used to

manufacture or inspect parts with spatial-frequency-based specifications. At Lawrence Livermore National
Laboratory, one of our responsibilities is to design or select the appropriate machine tools to produce advanced
optical and weapons systems. Recently, many of the component tolerances for these systems have been specified in
terms of the spatial frequency content of residual errors on the surface. We typically use an error budget as a
sensitivity analysis tool to ensure that the parts manufactured by a machine will meet the specified component
tolerances. Error budgets provide the formalism whereby we account for all sources of uncertainty in a process, and
sum them to arrive at a net prediction of how "precisely" a manufactured component can meet a target
specification. Using the error budget, we are able to minimize risk during initial stages by ensuring that the machine
will produce components that meet specifications before the machine is actually built or purchased. However, the
current error budgeting procedure provides no formal mechanism for designing machines that can produce parts
with spatial-frequency-based specifications. The output from the current error budgeting procedure is a single
number estimating the net worst case or RMS error on the work piece. This procedure has limited ability to
differentiate between low spatial frequency form errors versus high frequency surface finish errors. Therefore the
current error budgeting procedure can lead us to reject a machine that is adequate or accept a machine that is
inadequate. This paper will describe a new error budgeting methodology to aid in the design and characterization
of machines used to manufacture or inspect parts with spatial-frequency-based specifications. The output from this
new procedure is the continuous spatial frequency content of errors that result on a machined part. If the machine
does not meet specifications, the procedure identifies the sources of the critical errors. We would then evaluate these
errors and either reduce the errors through design improvements or modifications to cutting parameters (spindle
speed, feed, etc.) or select a different candidate machine if improvements were not practical.

2. Background
The principles of designing precision instruments for meeting challenging tolerance requirements have a

rich history [1].  Likewise, the methodologies for analyzing the errors in experimental data and performing
differential sensitivity analyses are well-documented [2,3]. Yet the first clear formalization of error budgeting
applied to precision engineering appears to originate in the analysis by R. Donaldson during the design of the Large
Optics Diamond Turning Machine at Lawrence Livermore National Laboratory (LLNL) [4].  Donaldson's formalism
is referenced in current textbooks [5] and is the basis for subsequent machine designs at LLNL [6].

Figure 1 shows flowcharts for both the conventional and the new error budget procedure and how they
differ. The upper portion of Figure 1 shows Donaldson's flowchart that illustrates the mapping of error sources onto
a work piece geometry. The first step of the conventional error budget is to identify the physical influences that
generate the dimensional errors that propagate through the machine tool. These include effects such as thermal
gradients and temperature variability, bearing noise, fluid turbulence in cooling passages, way non-straightness, etc.
The next step is to determine how this source couples to the machine. A coupling mechanism converts these
physical influences into a displacement that has a direct influence on machine performance. An example of a
coupling mechanism is the thermal expansion that may transform a time-varying heat source in the vicinity of the
machine into a machine way distortion. These displacements represent dimensional changes in the system. A single
peak-to-valley number is usually used to quantify the dimensional changes, not differentiating between the spatial
frequency content of the error. The next step is to sum all the contributing errors using an appropriate combinatorial
algorithm. Literature suggests a variety of combinatorial algorithms [7]. The last step in the error budgeting
procedure is to transform these errors into the work piece coordinate system. To convert these machine
displacements into the errors that would reside on the work piece surface in the directions of interest, we must
consider the tool path (i.e. feed rates, spindle speeds, etc.). The output from this procedure is a single number
predicting the net error that would result on a machined work piece. We would then compare this number to the part
specifications. If the prediction meets target specifications, we would accept the machine design under evaluation. If
the prediction does not meet specifications, we would evaluate methods to improve this design by observing which
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sources are the dominating contributing errors. In this way we can evaluate the cost versus accuracy of different
candidate designs. If improvements can be made to an existing design, we would make those changes to the error
budget and reevaluate the net error. If the modifications are not practical, we would then consider an entirely new
design, or possibly reevaluate the specifications.

3. Technical Approach
The lower portion of Figure 1 shows the new error budget approach. The first two steps, identifying the

sources and how they couple to the machine, are identical. However, the next step in the new approach converts the
elemental errors into the frequency domain. The next step is to combine the errors in the frequency domain. The
combinatorial rule is a completely new algorithm with a statistical foundation. The next step considers the
machining process. The conventional approach assumes that the machine and cutting process donÕt damp or amplify
the error sources, while the proposed approach considers the dynamics of the cutting process. The last step is to
transform the errors into the part coordinate system. The output from this process is the continuous spectrum of
errors that would result at all spatial frequencies on the part.

3.1 Combinatorial Rule
We have developed a combinatorial rule for the addition of the frequency content of each elemental error.

The key to the combinatorial algorithm is to consider the spectrum of each elemental error as the sum of sinusoidal
errors at specific frequencies. The addition of two sinusoidal signals at a given frequency results in a sinusoidal
signal with the same frequency, but the amplitude can vary anywhere from the direct difference to the sum of the
two amplitudes depending on the phase shift between the two signals. We first identify all elemental errors that are
correlated and appropriately sum the amplitudes of these errors.  We then consider the phase shift between the
remaining elemental errors to be uniformly distributed variables between 0 and 2π. We have analytically shown that
the expected value of the square of the net amplitude is equal to the sum of the squares of the amplitudes of each
elemental error. This is equivalent to saying that the expected net power spectral density (PSD) is the sum of the
elemental PSDs.  Furthermore, we can now determine the probability distribution function of the net error with the
use of a Monte Carlo simulation. The 95% confidence limit of the net PSD is approximately three times the mean,
and the 99% confidence limit is approximately 4.6 times the mean. This is significantly less than the worst case
error. For example, if 25 errors of equal amplitude were summed, the worst case net PSD would be over eight times
larger than the 95% confidence limit, and over five times larger than the 99% confidence limit.
3.2 Cutting Process Transfer Function

The purpose of the cutting process transfer function is to convert the motion of the tool in free space to the
motion of the tool in the part during the cutting process. This step is necessary because current error characterization
procedures measure the error motion of the tool in an open loop sense. The loop is closed when tool is in contact
with the part during the cutting process. Differences occur when the loop is closed due to static and dynamic
stiffness of the machining system. The conventional error budgeting procedure assumed that the measured motion of
the tool in free space is the same as the motion of the tool in the part during cutting, or in other words it assumes that
the transfer function equals one. This may be true for a specific frequency band, although we assume that the cutting
process will act as a filter with the ability to amplify or suppress the input error motion. For example, if the
frequency content of one error were close to the machine resonance, we would expect this error to be amplified. In
general, however, during precision machining we (1) design machines with high first modes, and (2) avoid
machining conditions that are at the machine resonances. For precision operations, we expect that the machining
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operation will appear as a low-pass filter, where the low frequency gain is one and the high frequency gain
decreases.
3.3 Mapping the Errors into the Work piece Coordinate System

Given the frequency content of the error motion of the tool during cutting, we must take into consideration
the path of the tool and the tool geometry determine the frequency content of the residual surface errors on the work
piece. Typical tools with a round cutting edge impart a nominal surface finish, or scalloping, during turning, even
for a process with no errors. Next, we consider the exact path of the tool during the entire cutting procedure to map
these errors onto the relevant work piece coordinate system.

For example, during a facing operation on a diamond turning machine, the part turns while the tool remains
stationary. Consider the spatial frequency content of a radial trace across the work piece. The turning process can be
considered a sampling mechanism. The radial trace is composed of the time domain sampling of the tool motion
once every revolution of the part. Once every revolution, the tool falls on the radial trace of interest, leaving behind
the signature of the tool as well as any error motions.

The description of the process so far has been in the time domain. However, we are interested in the
frequency domain. Sampling in the time domain can be decomposed into a multiplication procedure of the original
time domain signal by a series of impulses. Since multiplication in the frequency domain is equivalent to
convolution in the frequency domain, the sampling procedure is converted to the frequency domain by a convolution
process. Note that unavoidable aliasing occurs for errors with higher frequency content than the rotational speed of
the spindle. Note also that errors at frequencies that are an even multiple of the spindle speed (such as ÔsynchronousÕ
spindle errors) do not appear on the radial trace due to this aliasing.

The imparting of the tool geometry onto the work piece can be considered a convolution in the time
domain. Conveniently, convolution in the time domain is equivalent to multiplication in the frequency domain.
Therefore, the imparting of the tool geometry onto the work piece in the frequency domain can be considered a
filter.

4. Validation through Experimentation
We are in the process of validating this procedure through actual machining tests. Our test bed is a T-based

lathe. We will demonstrate this procedure for facing and cylindrical turning of copper using a diamond tool. For
these simple cases, the dominant elemental errors include the feed axis straightness and the spindle axial, radial and
tilt errors. During an actual error budgeting procedure, the form for the elemental error spectrums must be assumed
based on previous experimentation and experience along with expert knowledge and analysis of the machine design.
However, for this validation we will actually measure the frequency content of the elemental errors and then employ
this procedure to predict the net spectrum of errors that will reside on our test parts. We will then machine these test
parts and characterize the errors in the frequency domain using a combination of surface finish and form measuring
instruments. The predicted spatial-frequency spectrum will be compared to the measured errors for final validation.

4.1 Results from Spindle Tests
The test machine has an air-bearing

spindle with a DC brushless motor, pulse-width-
modulated controller and a resolver for feedback.
We measured axial and radial error motions of
the spindle using a test mandrel with two
precision balls and capacitance gages. Because
we are interested in the spatial rather than
temporal frequency content of the errors, we used
an encoder to trigger data acquisition, gathering
one thousand points every revolution of the
spindle. We recorded twenty revolutions of data
for spindle speeds from 60 RPM to 1500 RPM in
steps of 60 RPM. As expected, the air-bearing
spindle is very repeatable with sub-micrometer
levels of asynchronous motion. However, the
error characteristics drastically change at
different spindle speeds. For example, the axial
motion at 840 RPM spindle speed has a
synchronous error with a dominant lobing of 17,
18 and 19 cycles per revolution as shown in
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Figure 3: Axial Errors at 300 RPM
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Figure 2: Axial Errors at 840 RPM



Figure 2. If this error was associated with a physical property of the motor such as the number of commutations, we
would expect the spatial frequency of the lobing to remain fixed. However, at a spindle speed of 300 RPM, we
observed a much higher spatial frequency lobing pattern as seen in Figure 3. In general, the spatial frequency of the
lobing increases with decreasing spindle speed.
However, the temporal frequency of the
dominant errors remain in the same region for
all spindle speeds as shown in the plots on the
right sides of Figures 2 and 3.

We are investigating the source of the
forcing function. It is curious that the forcing
function remains almost completely
synchronous. Our hypothesis is that the forcing
function is due the spindle speed variations
about the set point caused by the controller. The
observation that all but the once and twice per revolution errors disappear when the motor is turned off and the
spindle coasts supports this hypothesis. Figure 4 shows the measured spindle speed when the desired speed is set to
300 RPM. Converting this variation to the spatial frequency domain, we observe that the variation is almost entirely
synchronous. Modal testing revealed a torsional mode that excites axial displacements at approximately 240 Hz,
which is the region where the errors are amplified. Therefore, we observe that the forcing function is amplified at the
machine resonance, which is fixed in the temporal frequency domain. This corresponds to amplification at different
spatial frequencies for different spindle speeds. Since we donÕt have similar data for other spindles, we are not sure
whether these observations are unique to this machine or if this is a common occurrence. From a controls standpoint,
it is very difficult to control the velocity of a system with almost no friction such as an air-bearing spindle.
Furthermore, there is no velocity feedback sensor. We will continue to study the control system to determine the
source of the spindle variations.

This work presents an opportunity to optimize cutting parameters to minimize errors. At low spindle
speeds, the machine resonance results in a high spatial frequency error. However, since the forcing function does not
have much energy at this high spatial frequency, the resulting errors are small. Unfortunately, slow spindle speeds
cause longer machining times that could result in more significant thermal errors. At higher spindle speeds, the
forcing function energy at the machine resonance increases, and we begin to see larger errors. However, it may be
possible to select a high spindle speed that misses the machine resonance. During machining experiments for
validation, we will select specific spindle speeds to study this effect.

5. Conclusions
This work points out the need for a mechatronic, or holistic approach to machine design. In other words,

placing a precision air-bearing spindle on a machine is not enough to ensure small errors. We must consider the
dynamic characteristics of the machine structure, control system and cutting parameters as well as the machine
components and how they interact as a system to design a precision machine tool. This spatial-frequency-based error
budget will encompass the entire machine design as an entire system, the end result will be the entire spatial
frequency content of errors that would reside on the machined part. Work will continue for the next year, where we
will complete measurements of contributing errors and determine the cutting process transfer function. We will then
perform machining experiments and compare the measured errors to the prediction from this error budgeting
procedure.
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Figure 4: Spindle Speed Variation at 300 RPM


